
Week 4 - Wednesday

 What did we talk about last time?
 Pointer review
 Interprocess communication overview

 There are many IPC approaches, but they can all be
categorized as either message passing or shared memory

 Message passing:
 Sender prepares a message
 Sender makes a system call to request a data transfer
 Kernel copies the message into a buffer
 Receiver makes a system call to retrieve the data
 Receiver copes the message into its own memory

 Shared memory IPC is completely different
 The processes decide on a chunk of virtual memory that will

be used for IPC
 The processes make system calls to request that this memory

is shared
 Once it's shared, processes can read and write from shared

memory just like any other data in the program
 Mediation through the kernel isn't needed after the memory

is shared

 Message passing requires:
 A system call to read
 A system call to write
 Copying the message into kernel memory
 Copying the message into receiver memory

 Thus, sending lots of messages can cause a lot of overhead
 However, sending a small number of messages can be less

expensive than setting up shared memory
 Message passing naturally handles the problem of

synchronization
 Making sure that timing doesn’t corrupt memory

 It's computationally expensive to set up the shared memory
 But that's a one-time cost
 If two processes are sharing lots of messages, it can be more

efficient to use a shared memory system
 Perhaps the more significant problem with shared memory is

synchronization
 Processes reading and writing the same memory can leave the memory in

an inconsistent state
 If one process executes x += 100 while another executes x -= 100,

the result could be the correct x or the incorrect x + 100 or x – 100
 Tools must be used to guarantee synchronization

 Although all IPC techniques fall under the message passing or
the shared memory model, there are other ways to categorize
them:
 For data exchange or purely for synchronization
 As a stream of bytes or data with more structure
 For local communication or for networked communication

 Note: People sometimes use the term "shared memory" to
refer only to the technique using shm_open() and not
memory-mapped files

 Using the categories from the previous slide, we can list all of the IPC techniques that will
be covered in this class

 We just talked about signals, which are a form of IPC but very limited
 We'll cover sockets when we talk about networking

Technique Model Purpose Granularity Network

Pipe/FIFO Message passing Data exchange Byte stream Local

Socket Message passing Data exchange Either Either

Message queue Message passing Data exchange Structured Local

shm() Shared memory Data exchange None Local

Memory-mapped file Shared memory Data exchange None Local

Signal Message passing Synchronization None Local

Semaphore Message passing Synchronization None Local

 Pipes are a way to do message passing between two
processes
 The bytes flow in one direction
 There's a different file descriptor for each end
 Think of it like a pipe where water is poured into one end and comes

out the other
 Internally, the shell uses pipes to communicate between two

programs when you use the | operator on the command line

sort foo.txt | grep -i error | head -n 10

 Pipes only go in one direction
 One end is the reading end, and the other is the writing end

 Pipes preserve order
 The bytes read come out in the same order they were written

 Pipes have limited capacity
 If a pipe is full, trying to write to the pipe will block until more is read

 Pipes are unstructured
 It's all just bytes, so the processes have to know what kind of data to

expect
 Messages smaller than PIPE_BUF are sent atomically
 Two processes writing messages to a pipe will not get their messages

garbled

 The pipe() function takes an int array of length 2 to hold file
descriptors corresponding to the ends of the pipe

 It's convention to use element 0 for reading and element 1 for
writing

 For piping between parent and child, the call to pipe() happens
before the fork(), so that both have clones of the same file
descriptors

 One process reads from the pipe and the other writes
 Each process closes the end that they're not using

int pipe (int pipefd[2]);

int pipefd[2];
char buffer[10];
memset (buffer, 0, sizeof (buffer));
int result = pipe (pipefd); // Open the pipe
assert (result >= 0);

pid_t child_pid = fork (); // Create child process
assert (child_pid >= 0);
if (child_pid == 0)
{
close (pipefd[1]); // Child closes writing end
ssize_t bytes_read = read (pipefd[0], buffer, 10); // Read from pipe
if (bytes_read <= 0)
exit (1);

printf ("Child received: '%s'\n", buffer);
exit (0);

}

close (pipefd[0]); // Parent closes the reading end
strncpy (buffer, "hello", sizeof (buffer));
printf ("Parent is sending '%s'\n", buffer);
write (pipefd[1], buffer, sizeof (buffer)); // Parent sends "hello"
wait (NULL); // Wait for child to terminate

 Let's write a program that:
 Creates a pipe
 Spawns a child
 Reads words from the command line (until "exit" is entered)
 Sends those words to the child through the pipe
 Kills the child when done

 The child:
 Reads words
 Prints them out

 Let's go back to our command-line example:

 What's happening behind the scenes?
 The shell is calling fork() and exec() to run each of those processes
 Then, each process is linked to the next one with a pipe
 But how do those arbitrary processes know to read from or write to a pipe?
 They don't, so the shell magically changes stdout or stdin to pipe file

descriptors

sort foo.txt | grep -i error | head -n 10

sort grep head
redirected
stdout

redirected
stdin

redirected
stdout

redirected
stdin

 The dup2() function closes a new file descriptor and
replaces it with an old file descriptor

 This function is used by the shell to close their stdin or
stdout and replace it with an end of a pipe

 The syntax is confusing:
 We keep the first file descriptor
 We replace the second one

int dup2 (int oldfd, int newfd);

 The output of Child 2 becomes the input of Child 1
assert ((child_pid = fork ()) >= 0); // Child 1
if (child_pid == 0)

{
close (pipefd[1]); // Close write end of pipe
dup2 (pipefd[0], STDIN_FILENO); // Reading from stdin reads from pipe
char *buffer = NULL;
size_t size = 0;
getline (&buffer, &size); // Function that reads a line, resizing buffer as needed
printf ("Received: '%s'\n", buffer);
free (buffer);
exit (0);

}

assert ((child_pid = fork ()) >= 0); // Child 2
if (child_pid == 0)

{
close (pipefd[0]); // Close read end of pipe
dup2 (pipefd[1], STDOUT_FILENO); // Writing to screen writes to pipe
printf ("Now is the winter of our discontent\n");
exit (0);

}
close (pipefd[0]); // Parent closes both ends of the pipe for itself
close (pipefd[1]);
wait (NULL); // Wait for children to finish

 FIFOs
 Shared memory with memory-mapped files

 Keep working on Project 1
 Due Friday by midnight!

 Read section 3.4

	COMP 3400
	Last time
	Questions?
	Project 1
	Interprocess Communication
	Message passing
	Shared memory
	Pros and cons of message passing
	Pros and cons of shared memory
	The IPC zoo
	IPC taxonomy
	Pipes
	Pipe details
	Pipe mechanics
	Pipe example
	Practice
	Pipes and shell commands
	dup2()
	dup2() example
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

